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ABSTRACT: Biaxial deformation of suspended membranes widely
exists and is used in nanoindentation to probe elastic properties of
structurally isotropic two-dimensional (2D) materials. However, the
elastic properties and, in particular, the fracture behaviors of
anisotropic 2D materials remain largely unclarified in the case of
biaxial deformation. MoTe2 is a polymorphic 2D material with both
isotropic (2H) and anisotropic (1T′ and Td) phases and, therefore,
an ideal system of single-stoichiometric materials with which to
study these critical issues. Here, we report the elastic properties and
fracture behaviors of biaxially deformed, polymorphic MoTe2 by
combining temperature-variant nanoindentation and first-principles
calculations. It is found that due to similar atomic bonding, the effective moduli of the three phases deviate by less than 15%.
However, the breaking strengths of distorted 1T′ and Td phases are only half the value of 2H phase due to their uneven
distribution of bonding strengths. Fractures of both isotropic 2H and anisotropic 1T′ phases obey the theorem of minimum
energy, forming triangular and linear fracture patterns, respectively, along the orientations parallel to Mo−Mo zigzag chains.
Our findings not only provide a reference database for the elastic behaviors of versatile MoTe2 phases but also illuminate a
general strategy for the mechanical investigation of any isotropic and anisotropic 2D materials.

KEYWORDS: MoTe2, elastic properties, phase transition, nanoindentation

Elastic properties are key determinants for the strain
engineering of two-dimensional (2D) materials1−4 and

also play vital roles in the designs of flexible 2D devices. 2D
materials have been reported to have ultrahigh in-plane
modulus (E2D) and breaking strength (σ0

2D) in contrast to
their 3D counterparts.5−7 Their superior stiffness and flexibility
have enabled lots of functions in flexible transistors, resonators,
and oscillators.8,9 Experimentally, elastic properties of 2D
materials can be facilely probed by nanoindentation under
atomic force microscopy (AFM), in which a suspended,
circular membrane of a 2D material is imposed with a biaxial
strain by indenting the center with an AFM tip.5,10 The
nanoindentation of circular membranes is a reliable way to
investigate the elastic properties and fracture behaviors of

ultrathin materials because it avoids both the non-uniformity of
strain and the defect-initiated breaking from edges that usually
occur in the approach of the uniaxial stretch of thin films.
Therefore, nanoindentation has been intensively used to
investigate structurally isotropic 2D materials such as graphene
and 2H-MoS2.

5−7,11 For the investigation of anisotropic 2D
materials, however, uniaxial stretch is still considered to be
necessary, and thereby, ribbon-like materials or trenches are
defined by complicated, multistep microfabrication.12

Although several anisotropic 2D materials have been
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investigated by nanoindentation recently, their elastic proper-
ties and particularly fracture behaviors in the case of biaxial
deformation have yet to be clarified.13

The two-dimensional transition metal dichalcogenides
(TMDCs) attract great interests in recent years because of
their extraordinary and tunable properties by temperature,
strain, doping, phase transition, and van der Waals (vdW)
stacking. This has made 2D TMDCs prospective materials for
applications in electronics, photonics, spintronics, and electro-
mechanics.8,9,14−18 MoTe2 is a typical yet unique TMDC with
both structurally isotropic (hexagonal 2H) and anisotropic
(distorted octahedral 1T′ and octahedral Td) phases around
room temperature (Figure 1a). The three phases have shown
remarkably different electrical transport properties. The 2H-
MoTe2 is semiconducting with a bandgap of ∼1 eV. The 1T′
phase is metallic, and its monolayer is predicted to be a 2D
topological insulator. The Td phase has been recently
recognized as a type II Weyl semimetal that exhibits novel
quantum phenomena.14,19−23 The 2H-to-1T′ transition could
be triggered by temperature, laser irradiation, or electrostatic
doping, while the 1T′-to-Td transition occurs at ∼250 K at
atmospheric pressure.20,22,24 The versatile phases thus have
made MoTe2 a perfect group of materials with single
stoichiometry for the clarification of elastic properties and
fracture behaviors of both isotropic and anisotropic 2D
structures.
In this work, we studied the elastic properties and fracture

behaviors of 2H-, 1T′- and Td-MoTe2 by means of temper-

ature-variant, biaxially deformed nanoindentation and first-
principles calculations. The effective E2D of the three phases
are found to be similar to minor deviations of less than 15%,
but their breaking strengths show large diversities. Density
functional theory (DFT) calculations show consistent E2D

values for the three phases, and we attribute the lower
strengths in the 1T′ and Td phases to their uneven distribution
of bonding strengths due to their distorted structures. We also
clearly observe that there exists a triangular-shape fracture
pattern in the 2H phase and linearly shaped or T-shape
patterns in the 1T′ phase. Polarization-resolved second
harmonic generation (SHG) experiments prove that the
fracture patterns propagate along the Mo−Mo zigzag
directions in both isotropic and anisotropic phases, which
obeys the theorem of minimum energy as revealed by the DFT
calculations. Both the elastic properties and the fracture
behaviors of the three phases are found to depend on their
structural symmetry, which also suggests that the facile
nanoindentation providing with biaxial deformation is capable
of probing both isotropic and anisotropic 2D materials.
The samples of 2H- and 1T′-MoTe2 thin flakes were

prepared by mechanical exfoliation from bulk crystals (Figure
1b) onto a SiO2 (285 nm thick)/Si substrate, which was pre-
patterned with arrays of circular holes that are ∼1 μm in
diameter and 285 nm in depth. The samples of Td phase were
obtained by cooling the 1T′ samples to below 250 K. The
surface topography and the thicknesses of the membranes were
characterized by AFM (Figures 1c,d and S1). Transmission

Figure 1. Crystalline structures and characterizations of the three MoTe2 phases. (a) Illustration of crystalline structures of 2H-, 1T′-, and Td-
MoTe2. (b) Bulk crystals of 2H- and 1T′-MoTe2 used in this work. (c) AFM topography of a 1T′-MoTe2 sample ∼10 nm thick over a holey
substrate. (d) Surface morphology of MoTe2 over a single hole. The white line in panel d is the height scan of the sample following the dashed line.
(e) Raman spectra of the three phases. The Td phase was measured at 203 K, and the Ag

3 peak splits into two peaks, as enlarged in the inset. (f)
Temperature dependence of the Raman shifts of Ag

4 peak (MoTe2) and Si peak during heating and cooling. The slope of the Ag
4 curve changes at

∼250 K, where a phase transition occurs. Scale bars: (b) 2 mm, (c) 5 μm, and (d) 400 nm.
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electron microscopy (TEM) analysis indicates that the samples
are single crystals without microcracks or flaws (Figure S2).
Figure 1e shows the Raman spectra of the three phases. For
1T′ and Td phases, the Raman spectra are almost identical
because of their similar crystal structures except the Ag

3 peak at
128∼134 cm−1, which splits into two peaks, namely Ag

3 and
Ag

3′, across the transition from 1T′ to Td phase. The latter
peak originates from the out-of-plane vibration mode and
cannot be detected in the 1T′ phase because of the existence of
inversion symmetry.25,26 Temperature-variant Raman spectra
were also conducted to further understand the 1T′-to-Td phase
transition. Figures 1f and S3 show a blue shift of Ag

4 peak of
1T′-MoTe2 when cooling the sample. It has an evident slope
change at the temperature around 250 K, indicating the 1T′-
to-Td transition, which is consistent with the previous results
probed by electrical measurements.19,21 As a comparison, the
Raman peak of Si without any phase transitions at this
temperature range shows an almost linear increase during the
cooling, also consistent with literature.27

Prior to the nanoindentation test, the sample was scanned in
tapping-mode AFM for a few times until its thermal drift is not
noticeable. Then, the AFM tip was positioned at the center of a
hole covered by a suspended MoTe2 membrane. With the
sample stage moving upward, a point load was applied onto the
center of the suspended membrane to deform it biaxially by the
AFM tip (Figure 2a). The indentation depth δ is defined as the
displacement of the center of the suspended membrane. The
applied force F can be calculated by Hooke’s law, F = kx, where
k is the spring constant of the AFM probe that is calibrated by
the Sader method (see Figure S4). In our experiments, because
the membranes measured are 3−14 nm in thickness and the
contribution of out-of-plane shearing stress is negligible, the

nonlinear-membrane model applies according to our calcu-
lations (Figure S5)7,10 following the equation:5,10,28
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where E2D is the in-plane elastic modulus, σ2D is the pretension
of the suspended membrane over a hole, t is the thickness of
the membrane, r is the radius of the hole, and q = 1/(1.05 −
0.15ν − 0.16ν2) is a factor determined by the Poisson’s ratio ν.
The first term in eq 1 corresponds to the bending behavior of
the membrane with a bending rigidity D = E2Dt2/12(1 − ν2).
The second and the third terms are related to the contributions
from pretension (σ2D) and elastic deformation (E2D),
respectively. Here, we take q = 1.00 for the 2H phase and q
= 1.02 for the 1T′ and Td phases according to the theoretical
results from first-principles calculations that will be discussed
later.
As is also deduced from eq 1, the F−δ curve appears linear

when the indentation depth δ is small. With the increase of the
indentation depth δ, the in-plane elastic deformation becomes
dominant, and F is finally ruled by a cubic order of δ (Figure
S6). When the force finally reaches the breaking point, the
suspended membrane collapses, and its breaking strength
could be thus measured following the equation:
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(2)

where F0 is the fracture force and R is the radius of the AFM
tip. In our experiments, R was measured through scanning
electron microscopy (SEM) (Figure S7).

Figure 2. Nanoindentation experiments for the three MoTe2 phases. (a) Schematic diagram of the nanoindentation process. The indentation depth
δ is determined by δ = z − x, where z is the moving distance of the sample stage that is controlled by the piezoelectric scanner and x is the
deflection of the AFM probe detected by a laser reflection system. (b) Dependence of indentation force on indentation depth for the three MoTe2
phases, which was measured by two tips with different diameters. The cross marks at the end of each curve indicate the fracture points of the
membranes. (c−e) Histograms of elastic moduli of 2H-, 1T′-, and Td-MoTe2, respectively. (f) Elastic moduli of a 1T′ sample measured by
temperature-variant nanoindentation across its 1T′-to-Td phase transition.
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Eqs 1 and 2 have well described the elastic behaviors of
structurally isotropic 2D materials. For anisotropic 2D
materials, the indentation of a circular membrane will
introduce an identical strain but different stresses along
different lattice directions due to the anisotropy in modulus.
To describe the elastic response of an anisotropic 2D material
under tension, we introduce an equivalent elastic modulus
(Eeq). Continuum mechanics theory has shown that Eeq is a
function of the elastic modulus (Ex, Ey), in-plane shearing
modulus (G), and the Poisson’s ratio (νx, νy) (see the
Supporting Information S11 for details) following:

ν ν ν ν= + + + + −E E E E E
G3

8
( )

1
8

( )
2

(1 )x y x x y y x yeq

(3)

The theoretical Eeq is expected to be identical to the value of
experimental E2D. With the Eeq, the equivalent breaking
strength of an isotropic 2D material should also follow the
eq 2 and is determined by the lattice orientation that can
sustain the minimum strain upon breaking.
We conducted the nanoindentation experiments on 23

circular membranes in 3 flakes of 2H-MoTe2, 12 membranes in
2 flakes of 1T′-MoTe2, and 14 membranes in 3 flakes of Td-
MoTe2. Each circular membrane was indented with at least 5
different applied forces before its fracture. The Td phase was
probed by cooling down the 1T′ phase sample from room
temperature to 243∼245 K with a cryostat (Multimode cooler)
under the AFM.
Previous studies including ours have shown that the

interlayer sliding will soften the modulus of a layered material.6

As a result, if there exists an interlayer sliding, the measured
E3D would gradually decrease with the increase of the
membrane thickness. Whether an interlayer sliding will occur
depends on the strength of vdW interlayer interaction and the
strain applied on the material. It has been reported that in
black phosphorus, E3D decreases with increasing the number of
layers,29 but in WSe2, E3D is independent of it.13 In our
experiment, we found that E2D shows a good linear relationship
with the membrane thickness, and thus, E3D generally remains
unchanged (see Figure S8). This result suggests that the
interlayer sliding of MoTe2 is negligible in our experimental
conditions. The force induced by compressing the gas in the
sealed hole is also calculated, and its impact is found to be
negligible (see the Supporting Information for detailed
discussion). These results have indicated that our experiment
fits well with the mechanical model, and that the mechanical
properties of the multilayer samples can be extended to apply
on monolayer ones. Typical force−indentation depth (F−δ)
curves are shown in Figure 2b. The coefficients of
determination (R-square) for most force curves are larger
than 0.999, indicating a good fitting of the data.
The 2D elastic modulus relates to the change of planar

elastic energy upon deformation, which has a unit of joules per
square meter or newtons per meter. By dividing the 2D
modulus by the sample thickness measured by the AFM, we
get the 3D modulus with a unit of N/m2 or Pa. This
conversion provides an approach to comparing the stiffness of
thin 2D materials with the values of bulk materials. Table 1
shows the data related to the measurements for the three
phases. The E3D are calculated as 110 ± 16 GPa for 2H-
MoTe2, 99 ± 15 GPa for 1T′-MoTe2, and 102 ± 16 GPa for
Td-MoTe2, all of which are of small deviations (<15%) and
about 40% the modulus of MoS2 (∼270 GPa).7 Figure 2c−e

shows statistical diagrams of the 3D moduli of the three
MoTe2 phases, which fits well with Gaussian distribution and
validates the reliability of our experiments. Figure 2f shows the
dependence of Young’s moduli of the sample on temperature.
The Young’s moduli increase slightly at 248 and 243 K, where
the sample should have entered the Td phase. These results
provide quantitative data for the evolution of MoTe2 elastic
properties across its 1T′-to-Td transition.
The breaking strengths (σ0

3D), however, differ largely for
different MoTe2 phases. The σ0

3D of 1T′ phase and Td phase
are similar (2.6 ± 0.2 and 2.5 ± 0.9 GPa, respectively) but less
than half the value of 2H phase (5.6 ± 1.3 GPa). These
phenomena suggest that the elastic modulus and breaking
strength are affected by different physical factors. Traditional
mechanic theory of materials has shown that elastic modulus is
only determined by the atomic bonding. This theory is also
applicable to 2D crystals because the 2D modulus reflects the
change in planar elastic energy originated from the
deformation of the atomic bonds. Because all phases of
MoTe2 share similar bonding conditions, with each Mo atom
shared by six adjacent Te atoms through covalent bond, the in-
plane elastic modulus is less phase-sensitive. However, the
strength of a membrane is related to the minimum energy to
break the atomic bonding, and therefore, the fracture is more
complex and sensitive to multiple factors including bonding,
crystal structure, crystal orientation, defects, etc.12,30−32

To further investigate the elastic properties of polymorphic
MoTe2, geometric relaxations and strain calculations of 2H,
1T′, and Td phases of MoTe2 were performed using density
functional theory (DFT) within projector-augmented wave
(PAW) potentials33 as implemented in the VASP code34,35

(details of the calculations can be found in the Materials and
Methods section and Figure S9). Panels a−c of Figure 3 are
the contour plots of changes in elastic energy as functions of
strains along armchair and zigzag directions for 2H-, 1T′- and
Td-MoTe2, respectively. As can be calculated, the isotropic E3D

of 2H-MoTe2 is 117.8 GPa, which is very close to the values
reported in previous study.36 The E3D of 1T′-MoTe2 is 124.5
GPa along armchair direction and 96.0 GPa along zigzag
direction, respectively. The value of Td-MoTe2 is 124.9 GPa
along the armchair direction and 97.6 GPa along the zigzag
direction. It is obvious that for both 1T′- and Td-MoTe2, the
elastic modulus differs by approximately 25% between the two
orthogonal directions. Because 1T′- and Td-MoTe2 show a
small difference in modulus along the two orthogonal
directions, the in-plane shearing modulus G can be estimated

Table 1. Elastic Properties of the Three Phases in Different
Samplesa

phase
sample
no.

thickness
(nm)

E2D

(N/m)
σ0

2D

(N/m)

σ0
2D/
E2D
(%)

E3D

(GPa)
σ0

3D

(GPa)

2H 1 3.6 316 26.1 8.3 87.8 7.3
2 6.7 668 30.5 4.6 99.7 4.6
3 6.0 675 42.0 6.2 112.5 7.0

1T′ 1 9.0 936 24.8 2.7 104.0 2.8
2 11.0 1073 27.6 2.6 97.6 2.5

Td 1 13.0 1318 41.7 3.2 101.4 3.2
2 10.5 1084 33.4 3.1 103.3 3.2
3 14.0 1218 30.5 2.5 87.0 2.2

aE2D and σ0
2D are obtained by fitting measured F-δ curves with eqs 1

and 2, respectively. E3D and σ0
3D are derived by dividing E2D and σ0

2D

values by membrane thicknesses.
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to be a range of value by the isotopic model, where G = E/2(1
+ ν). As such, theoretical equivalent modulus can be estimated
according to eq 3 in the case of biaxial deformation to be 110
± 3 GPa for 1T′-MoTe2 and 111 ± 3 GPa for Td-MoTe2, both
close to the experimental values. The elastic energy versus
strain curves of isotropic 2H- and anisotropic 1T′-MoTe2
under a uniaxial strain up to 10% are also plotted in Figure
3d,e. It reveals that the elastic energies of 2H phase are almost
the same along the two orthogonal directions at a small strain
(<5%) and deviate slightly with a higher value along the
armchair direction when the strain further increases. For the
1T′ phase, the elastic energy along the armchair direction is
always larger than that along the zigzag direction under the
same strain. This calculation also shows that when the strain is
within the calculated range (10%), both 2H- and 1T′-MoTe2
still remain elastic. Note that in experiments, the breaking
strains (σ0

2D/E2D; see Table 1) are smaller than 10%,
suggesting a brittle fracture mechanism for both 2H- and
1T′-MoTe2, probably due to point defects that are unavoidably
induced during the crystals growth. The fracture behavior
should follow the theorem of minimum energy that will be
discussed later.37

With the biaxial deformation in nanoindentation, we can
also experimentally study the fracture behaviors of both
isotropic 2H-MoTe2 and anisotropic 1T′-MoTe2. As shown in
Figure 4a, Y-shaped fractures are mostly observed among the
2H-MoTe2 samples. The angles between adjacent fracture
orientations are approximately 120°, revealing a 3-fold
symmetry of lattice in the 2H phase. In contrast, I-shaped
patterns form in most 1T′-MoTe2 samples (Figure 4d),
meaning that there exists a preferred fracture orientation. In
some other 1T′-MoTe2 samples, T-shaped patterns are
observed (Figure 4e), indicating that besides the preferred I-
shaped fracture, a secondary linear fracture may occur during

the nanoindentation. To experimentally determine the
relationship between the preferred fracture and the lattice
orientations, we conducted polarization-resolved SHG experi-
ments on the 2H- and 1T′-MoTe2 samples. Panels b and f of
Figure 4 show the SHG polarization polar map of the 2H and
1T′ samples, respectively, with altering the angle of the
incident laser. For the hexagonal 2H phase, the SHG shows a
6-fold pattern, with the petals indicating the armchair
directions. For the distorted octahedral 1T′ phase, the SHG
pattern is binary symmetric, and the direction of the minimum
intensity (plotted with a green arrow) is parallel to the Mo−
Mo zigzag alignment, as reported by the previous research.23,38

These SHG results confirm the lattice directions in the 2H-
and 1T′-MoTe2 samples. By comparing the fracture directions
(Figure 4a,d) and the lattice orientations (Figure 4b,f), we
conclude that the preferred fracture orientation in both the 2H
and the 1T′-MoTe2 is parallel to the Mo−Mo zigzag chains,
which are labeled by the blue and green arrows as a reference.
According to the theorem of minimum energy, the

generation of fractures in 2D materials is determined by a
competition between the cost in edge formation energy (ΔE)
and the gain in elastic energy. The typical edge formation
energy (ΔE1) includes energy contributions from edge-bond
breaking as well as edge-structure relaxation, which are plotted
by the hollow symbols in Figure 5c,d. However, considering
that the edge relaxation after the bond breaking is irrelevant to
fracture behaviors in the theorem of minimum energy, one
should use the edge formation energy excluding structural
relaxation (ΔE2, solid symbols in Figure 5c,d) instead of ΔE1
for the study of fracture, as we will demonstrate. Here, we
calculated both ΔE1 and ΔE2 for monolayer 2H- and 1T′-
MoTe2 by considering nanoribbons with varying widths (see
details in the Materials and Methods section). As shown by the
solid symbols in Figure 5, the calculated ΔE1 and ΔE2 depend

Figure 3. DFT calculations of elastic properties of bulk MoTe2. (a−c) Contour plot of change in elastic energy along the x (armchair) and y
(zigzag) lattice directions as functions of strain for 2H-, 1T′-, and Td-MoTe2, respectively. (d, e) Dependence of elastic energy on strains along two
orthogonal directions for 2H- and 1T′-MoTe2, respectively. The insets indicate deformation of unit cells along different lattice directions under a
uniaxial strain.
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insensitively on the ribbon width, giving converged results for
the wide samples in experiments.
For the 2H phase, ΔE2 of zigzag edges (∼0.569 eV/Å) is

∼12% lower than that of armchair edges (∼0.645 eV/Å),
which is rationalized by the fact that the number of bonds per
length along the zigzag direction is ∼13% smaller than that
along the armchair direction. In contrast, ΔE1 of zigzag edges
becomes ∼74% higher than that of armchair edges after
including the edge relaxation. Because the elastic energy is
isotropic in the 2H phase, the preferred direction of cracks is
dictated by the anisotropic ΔE (or more specifically ΔE2),
which is predicted to be along the zigzag direction, consistent
with our experimental results.
For the 1T′ phase, both the elastic energy and ΔE are

anisotropic. Under the same strain, the elastic energy is larger
along the direction having a larger elastic modulus, i.e., the
armchair direction. However, ΔE2 of zigzag edges (∼0.266 eV/
Å) is significantly lower than that of armchair edges (∼0.507
eV/Å). The larger elastic energy along the armchair direction
and the lower zigzag edge formation energy (ΔE2) suggest that
fracture prefers to form along the zigzag direction. Noticeably,
the former value of ΔE2 is considerably lower than that in the
2H phase. Detailed analysis found that there exists an uneven
distribution of bonding strength in the reconstructed phase,
and the weaker bonds (colored blue in Figure 5b) are
selectively broken when forming zigzag edges, which leads to a
much lower breaking strength in the 1T′ phase than in the 2H
phase, also in good agreement with our experiments (Table 1).

It should be noted that our DFT calculations studied fracture
features of MoTe2 monolayers instead of multilayers, as
investigated experimentally for simplicity, based on the
consideration that the interlayer vdW interactions are typically
weak and play a minor role in determining fracture behavior.
According to our test calculations, the relative stability of
different edge shapes is essentially independent of film
thickness. Thus, the theoretically predicted fracture direction
is applicable for monolayer as well as multilayers, which is in
agreement with our experimental observations.
In summary, by biaxial deformation of materials in

nanoindentation, we have investigated the in-plane elastic
moduli and breaking strengths of 2H-, 1T′-, and Td-MoTe2 as
well as their fracture behaviors. The effective moduli of the
three phases show little difference due to their similar atomic
bonding, but the strength of the 2H phase is significantly larger
than those of the 1T′ and Td phases because of the uneven
distribution of bonding strengths in the latter two distorted
phases. Through the direct observation of the fracture
membranes together with polarization-resolved SHG, we
have also deduced that the fractures prefer to propagate
along the orientations of Mo−Mo zigzag chains in both
isotropic and anisotropic phases, which obeys the theorem of
minimum energy as revealed by the DFT calculations. Our
studies provide a general approach that adopts the facile
nanoindentation with biaxial deformation to probe elastic
properties and fracture behaviors of structurally anisotropic

Figure 4. Fractures of 2H- and 1T′-MoTe2. (a) AFM images of suspended broken 2H-MoTe2 membranes exhibiting Y-shaped fracture patterns.
(b) SHG intensity polar map of the 2H-MoTe2 flake used in panels a and c. (c) AFM image of the 2H-MoTe2 flake that covers tens of holes. Inset
shows its crystal structure defined by the SHG experiment. (d, e) AFM images of suspended 1T′-MoTe2 membranes with linear and T-shaped
fracture patterns, respectively. (f) SHG intensity polar map of the 1T′-MoTe2 flake used in panels d and g. (g) AFM image of the 1T′-MoTe2 flake
and its crystal structure (inset). The circles in panels a and d indicate the indentation spots. The arrows in panels a−g label the directions parallel to
the Mo−Mo zigzag alignment in both 2H- (cyan arrows) and 1T′-MoTe2 (green arrows). Here, we use some straight edges of the samples as
reference lines to align the SHG map and fracture patterns. Some straight edges of the samples are also found to be in good parallel to the Mo−Mo
zigzag alignment (e.g., top edge in Figure 4c and left edge in Figure 4g). Scale bars: (a, d, e) 300 nm and (c, g) 3 μm.
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materials, which will shed light on the development of novel
flexible electronics based on versatile anisotropic 2D materials.
Materials and Methods. Sample Preparation. High-

quality 1T′-MoTe2 single crystals were grown by chemical
vapor transport (CVT) using polycrystalline MoTe2 as
precursors. Briefly, polycrystalline MoTe2 was synthesized by
heating the stoichiometric mixture of high-purity Mo foil
(99.95%, Alfa Aesar) and Te ingot (99.99%, Alfa Aesar) at
1073 K in a vacuum-sealed silica ampule for 3 days. The as-
grown MoTe2 was then recrystallized by CVT using the
transporting agent, powder TeCl4 (99%, Aladdin), with a
concentration of ≤2.7 mg mL−1. Material transport occurred in
a sealed silica ampule in a tube furnace for 3 days. After the
reaction, the ampule was immediately quenched in cold water
to obtain large-size 1T′-MoTe2 single crystals or naturally
cooled for 2H-MoTe2 single crystals. MoTe2 thin flakes were
mechanically exfoliated onto holey substrates using a 3 M tape.
The holey substrates defined with patterned circular holes (1
μm in diameter and 285 nm in depth) were fabricated by UV
photolithography and dry etching on Si wafers with a thermal
oxide layer. Optical microscope (OLYMPUS BX51 M) was
used to find samples of thin flakes. AFM measurement (Bruker
Multimode 8, contact mode) was applied to measure the
surface morphology and the layer thickness. TEM analyses
(FEI Tecnai G2 F20) were applied to examine the crystal
quality and the lattice structure.
Nanoindentation. Before indenting, a suspended mem-

brane was scanned in tapping mode for a few times until the
image became stable. Next, the scanning was paused, and the
tip was indented to the center of the suspended membrane.
During the indentation process, the sample stage movement, z,
and the deflection of the probe, x, were simultaneously
recorded. We indented each membrane with at least 5 different

forces before reaching its fracture point. After the fracture, the
sample was scanned again to observe fracture pattern. The
spring constant of the probe was calibrated by the Sader
method (online calibration), which followed a simple
harmonic oscillation model. The radius of the tip was
measured by a scanning electronic microscope (Jeol 7000).
Raman spectra and SHG measurement. Raman spectra were

measured by a Raman spectrometer (Horiba HR800) using an
excitation laser with a wavelength of 532 nm. To measure
Raman spectra at low temperatures, we used a cooling stage in
which liquid nitrogen passed the base for cooling and nitrogen
gas flowed into the chamber to avoid the formation of ice on
the samples. Polarization-resolved SHG was measured using a
992 nm laser, with the average power of 5 mW. The sample
was kept unmoved, and the incident laser rotates anti-
clockwise. We collect one data point every 6°, with the
integral time of 1 s per point.

Raman Spectra and SHG Measurement. Raman spectra
were measured by a Raman spectrometer (Horiba HR800)
using an excitation laser with a wavelength of 532 nm. To
measure Raman spectra at low temperatures, we used a cooling
stage in which liquid nitrogen passed the base for cooling and
nitrogen gas flowed into the chamber to avoid the formation of
ice on the samples. Polarization-resolved SHG was measured
using a 992 nm laser, with the average power of 5 mW. The
sample was kept unmoved, and the incident laser rotates anti-
clockwise. We collect one data point every 6°, with the integral
time of 1 s per point.

DFT Calculations. In our calculations of 3D bulk, a plane-
wave basis set with an energy cutoff of 400 eV was used, and a
6 × 10 × 2 Γ-point centered k-point was applied to sample the
Brillouin zone. We employed a nonlocal correction function
vdW-DF (optB86b)39 to consider the van der Waals

Figure 5. DFT calculations of edge formation energy for monolayers: (a, c) 2H- and (b, d) 1T′-MoTe2. (a, b) Armchair and zigzag edges formed
by breaking blue and red bonds, respectively. (c, d) Edge formation energy per length (ΔE) calculated for armchair (blue circle) and zigzag (red
triangle) monolayer nanoribbons with altered widths. Results excluding and including structural relaxations at the edges are represented by solid
and hollow symbols, respectively.
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interactions between neighboring MoTe2 layers. The structures
were fully relaxed until energy and force were converged to
10−7 eV and 0.001 eV/Å, respectively. In the strain
calculations, small uniaxial strains were applied along the x
(armchair) and y (zigzag) directions (±2%), and total energies
were calculated and fitted with the formula Es = a1εx

2 + a2εy
2 +

a3εxεy using a least-squares method.11,40 Here, Es, εx, and εy are
the energy deviation from the equilibrium stage, strain along
the x direction, and strain along the y direction, respectively.
The 2D elastic modulus were calculated by Ex = (2a1 − a3

2/
2a1)/A0 and Ey = (2a2 − a3

2/2a2)/A0, where A0 is the area of
the unit cell. The Poisson’s ratios along the x and y axes are νx
= a3/2a2 and νy = a3/2a1, respectively. In our calculations of
monolayer MoTe2 and its nanoribbons, we employed the
Perdew−Burke−Ernzerhof exchange correlation functional,41 a
plane-wave basis set with an energy cutoff of 340 eV, a vacuum
layer over 15 Å together with 17 × 17 × 1 (9 × 17 × 1)
Monkhorst−Pack k points for the 2H- (1T′-) monolayer and 9
× 1 × 1 (17 × 1 × 1) Monkhorst−Pack k points for armchair
(zigzag) nanoribbons. The edge formation energy (per length)

is defined as Δ = −E E E
l2

nr b , where Enr and Eb denote the total

energy of nanoribbon and its 2D monolayer bulk, respectively,
and l represents the edge length.
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